Fundamentals of Nonparametric Bayesian Inference PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fundamentals of Nonparametric Bayesian Inference PDF full book. Access full book title Fundamentals of Nonparametric Bayesian Inference by Subhashis Ghosal. Download full books in PDF and EPUB format.

Fundamentals of Nonparametric Bayesian Inference

Fundamentals of Nonparametric Bayesian Inference PDF Author: Subhashis Ghosal
Publisher: Cambridge University Press
ISBN: 0521878268
Category : Business & Economics
Languages : en
Pages : 670

Get Book

Book Description
Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.

Fundamentals of Nonparametric Bayesian Inference

Fundamentals of Nonparametric Bayesian Inference PDF Author: Subhashis Ghosal
Publisher: Cambridge University Press
ISBN: 0521878268
Category : Business & Economics
Languages : en
Pages : 670

View

Book Description
Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.

Fundamentals of Nonparametric Bayesian Inference

Fundamentals of Nonparametric Bayesian Inference PDF Author: Subhashis Ghosal
Publisher:
ISBN:
Category :
Languages : en
Pages : 656

View

Book Description
Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics.

Bayesian Nonparametrics

Bayesian Nonparametrics PDF Author: Nils Lid Hjort
Publisher: Cambridge University Press
ISBN: 1139484605
Category : Mathematics
Languages : en
Pages :

View

Book Description
Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.

Bayesian Inference on Complicated Data

Bayesian Inference on Complicated Data PDF Author: Niansheng Tang
Publisher: BoD – Books on Demand
ISBN: 1838803858
Category : Mathematics
Languages : en
Pages : 118

View

Book Description
Due to great applications in various fields, such as social science, biomedicine, genomics, and signal processing, and the improvement of computing ability, Bayesian inference has made substantial developments for analyzing complicated data. This book introduces key ideas of Bayesian sampling methods, Bayesian estimation, and selection of the prior. It is structured around topics on the impact of the choice of the prior on Bayesian statistics, some advances on Bayesian sampling methods, and Bayesian inference for complicated data including breast cancer data, cloud-based healthcare data, gene network data, and longitudinal data. This volume is designed for statisticians, engineers, doctors, and machine learning researchers.

Bayesian Nonparametric Data Analysis

Bayesian Nonparametric Data Analysis PDF Author: Peter Müller
Publisher: Springer
ISBN: 3319189689
Category : Mathematics
Languages : en
Pages : 193

View

Book Description
This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.

Flexible Bayesian Regression Modelling

Flexible Bayesian Regression Modelling PDF Author: Yanan Fan
Publisher: Academic Press
ISBN: 0128158638
Category : Business & Economics
Languages : en
Pages : 302

View

Book Description
Flexible Bayesian Regression Modeling is a step-by-step guide to the Bayesian revolution in regression modeling, for use in advanced econometric and statistical analysis where datasets are characterized by complexity, multiplicity, and large sample sizes, necessitating the need for considerable flexibility in modeling techniques. It reviews three forms of flexibility: methods which provide flexibility in their error distribution; methods which model non-central parts of the distribution (such as quantile regression); and finally models that allow the mean function to be flexible (such as spline models). Each chapter discusses the key aspects of fitting a regression model. R programs accompany the methods. This book is particularly relevant to non-specialist practitioners with intermediate mathematical training seeking to apply Bayesian approaches in economics, biology, finance, engineering and medicine. Introduces powerful new nonparametric Bayesian regression techniques to classically trained practitioners Focuses on approaches offering both superior power and methodological flexibility Supplemented with instructive and relevant R programs within the text Covers linear regression, nonlinear regression and quantile regression techniques Provides diverse disciplinary case studies for correlation and optimization problems drawn from Bayesian analysis ‘in the wild’

2017 MATRIX Annals

2017 MATRIX Annals PDF Author: Jan de Gier
Publisher: Springer
ISBN: 3030041611
Category : Mathematics
Languages : en
Pages : 691

View

Book Description
​MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in its second year, 2017: - Hypergeometric Motives and Calabi–Yau Differential Equations - Computational Inverse Problems - Integrability in Low-Dimensional Quantum Systems - Elliptic Partial Differential Equations of Second Order: Celebrating 40 Years of Gilbarg and Trudinger’s Book - Combinatorics, Statistical Mechanics, and Conformal Field Theory - Mathematics of Risk - Tutte Centenary Retreat - Geometric R-Matrices: from Geometry to Probability The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.

The Fundamentals of Heavy Tails

The Fundamentals of Heavy Tails PDF Author: Jayakrishnan Nair
Publisher: Cambridge University Press
ISBN: 1009062964
Category : Mathematics
Languages : en
Pages :

View

Book Description
Heavy tails –extreme events or values more common than expected –emerge everywhere: the economy, natural events, and social and information networks are just a few examples. Yet after decades of progress, they are still treated as mysterious, surprising, and even controversial, primarily because the necessary mathematical models and statistical methods are not widely known. This book, for the first time, provides a rigorous introduction to heavy-tailed distributions accessible to anyone who knows elementary probability. It tackles and tames the zoo of terminology for models and properties, demystifying topics such as the generalized central limit theorem and regular variation. It tracks the natural emergence of heavy-tailed distributions from a wide variety of general processes, building intuition. And it reveals the controversy surrounding heavy tails to be the result of flawed statistics, then equips readers to identify and estimate with confidence. Over 100 exercises complete this engaging package.

Handbook of Mixture Analysis

Handbook of Mixture Analysis PDF Author: Sylvia Fruhwirth-Schnatter
Publisher: CRC Press
ISBN: 0429508867
Category : Computers
Languages : en
Pages : 498

View

Book Description
Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time. The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy. Features: Provides a comprehensive overview of the methods and applications of mixture modelling and analysis Divided into three parts: Foundations and Methods; Mixture Modelling and Extensions; and Selected Applications Contains many worked examples using real data, together with computational implementation, to illustrate the methods described Includes contributions from the leading researchers in the field The Handbook of Mixture Analysis is targeted at graduate students and young researchers new to the field. It will also be an important reference for anyone working in this field, whether they are developing new methodology, or applying the models to real scientific problems.

Bayesian Modeling of Spatio-Temporal Data with R

Bayesian Modeling of Spatio-Temporal Data with R PDF Author: Sujit Sahu
Publisher: CRC Press
ISBN: 1000543617
Category : Mathematics
Languages : en
Pages : 435

View

Book Description
Applied sciences, both physical and social, such as atmospheric, biological, climate, demographic, economic, ecological, environmental, oceanic and political, routinely gather large volumes of spatial and spatio-temporal data in order to make wide ranging inference and prediction. Ideally such inferential tasks should be approached through modelling, which aids in estimation of uncertainties in all conclusions drawn from such data. Unified Bayesian modelling, implemented through user friendly software packages, provides a crucial key to unlocking the full power of these methods for solving challenging practical problems. Key features of the book: • Accessible detailed discussion of a majority of all aspects of Bayesian methods and computations with worked examples, numerical illustrations and exercises • A spatial statistics jargon buster chapter that enables the reader to build up a vocabulary without getting clouded in modeling and technicalities • Computation and modeling illustrations are provided with the help of the dedicated R package bmstdr, allowing the reader to use well-known packages and platforms, such as rstan, INLA, spBayes, spTimer, spTDyn, CARBayes, CARBayesST, etc • Included are R code notes detailing the algorithms used to produce all the tables and figures, with data and code available via an online supplement • Two dedicated chapters discuss practical examples of spatio-temporal modeling of point referenced and areal unit data • Throughout, the emphasis has been on validating models by splitting data into test and training sets following on the philosophy of machine learning and data science This book is designed to make spatio-temporal modeling and analysis accessible and understandable to a wide audience of students and researchers, from mathematicians and statisticians to practitioners in the applied sciences. It presents most of the modeling with the help of R commands written in a purposefully developed R package to facilitate spatio-temporal modeling. It does not compromise on rigour, as it presents the underlying theories of Bayesian inference and computation in standalone chapters, which would be appeal those interested in the theoretical details. By avoiding hard core mathematics and calculus, this book aims to be a bridge that removes the statistical knowledge gap from among the applied scientists.